# Antituberculosis Cycloartane Triterpenoids from *Radermachera boniana*

Ngan B. Truong,<sup>†</sup> Cuong V. Pham,<sup>\*,†</sup> Huong T. M. Doan,<sup>†</sup> Hung V. Nguyen,<sup>†</sup> Cuong M. Nguyen,<sup>‡</sup> Hiep T. Nguyen,<sup>§</sup> Hong-jie Zhang,<sup> $\perp$ </sup> Harry H. S. Fong,<sup> $\perp$ </sup> Scott G. Franzblau,<sup>||</sup> Djaja D. Soejarto,<sup> $\perp$ </sup> and Minh V. Chau<sup>\*,†</sup>

<sup>+</sup>Institute of Marine Biochemistry of the Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam

<sup>+</sup>Cuc Phuong National Park, Nho Quan, Ninh Binh, Vietnam

<sup>S</sup>Institute of Ecology and Biological Resources of the Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam

<sup>1</sup>Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60612-7231, United States

Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, Illinois 60612-7231, United States

S Supporting Information

**ABSTRACT:** Three new triterpenoids, bonianic acids A (1) and B (2) and 3-*O*-acetyluncaric acid (3), were isolated from the leaves and twigs of *Radermachera boniana*, together with six known compounds, ursolic acid (4), oleanolic acid (5), 3-epioleanolic acid (6),  $3\alpha$ -*O*-acetyl- $\alpha$ -boswellic acid (7), ergosterol peroxide (8), and  $\beta$ -sitostenone (9). Ergosterol peroxide (8) and bonianic acids A (1) and B (2) exhibited significant activity a



and bonianic acids A (1) and B (2) exhibited significant activity against Mycobacterium tuberculosis  $H_{37}$ Rv strain.

uberculosis (TB) is a disease caused by Mycobacterium *tuberculosis* that most often affects the lungs.<sup>1</sup> According to a 2009 estimate by the World Health Organization, 1.7 million deaths resulted from tuberculosis.<sup>2</sup> The number of new cases recorded each year continues to rise globally, especially in Africa, the Eastern Mediterranean region, and Southeast Asia. As part of our study in the search for new bioactive compounds from plants of Vietnam and Laos under the International Cooperative Biodiversity Groups (ICBG) Program,<sup>3</sup> a plant extract (SV2933, Radermachera boniana Dop, Bignoniaceae) collected from the Cuc Phuong National Park was found to inhibit the growth of *M. tuberculosis* H<sub>37</sub>Rv with an MIC value of 78  $\mu$ g/mL. Since a literature review showed that no chemical study of this plant had previously been reported, we selected this species for further studies. In this paper, we report the isolation and structural elucidation of three new triterpenoids (1-3), along with six known compounds, ursolic acid (4),<sup>4</sup> oleanolic acid (5),<sup>5</sup> 3-epi-oleanolic acid (6),<sup>6</sup>  $3\alpha$ -O-acetyl- $\alpha$ -boswellic acid (7),<sup>7</sup> ergosterol peroxide (8),<sup>8</sup> and  $\beta$ -sitostenone (9).<sup>9</sup> Ergosterol peroxide (8) was the most active compound against the M. tuberculosis H<sub>37</sub>Rv strain, followed by bonianic acids B(2) and A(1).

The dried and milled collected sample of the leaves and twigs of *R. boniana* (5.0 kg) was extracted with EtOAc at room temperature. The EtOAc-soluble product was purified by repeated open column chromatographies over silica gel to give compounds 1-9.

Compound 1 was obtained as a microcrystalline (mp 202-203 °C) material and was optically active,  $\left[\alpha\right]_{D}^{25} + 118$  (c 0.2, CHCl<sub>3</sub>). In its positive HRESI mass spectrum, the pseudomolecular ion was observed at m/z 521.3615  $[M + Na]^+$ , suggesting a molecular formula of C<sub>32</sub>H<sub>50</sub>O<sub>4</sub>. The 1D NMR spectra (<sup>1</sup>H and <sup>13</sup>C) of 1 indicated the presence of an acetyl, six methyls (five singlets and one doublet), 11 methylenes, six methines (five sp<sup>3</sup> and one sp<sup>2</sup>), one carboxylic carbon, and six quaternary carbons (five sp<sup>3</sup> and one sp<sup>2</sup>). The chemical shifts of CH<sub>2</sub>-19 ( $\delta_{\rm C}$  29.6,  $\delta_{\rm H}$  0.39 and 0.64, each dd, J = 4.5 Hz) were characteristic of a methylene function in a cyclopropane ring (Table 1).<sup>10a,b</sup> This observation suggested that 1 was a cycloartane triterpenoid. Analysis of the DEPT spectrum with the aid of 2D NMR determined the planar structure of 1 (Figure 1A), in which the methyl carbon C-28 was oxidized into a carboxylic group, which was established in turn by the presence of the HMBC correlation of the carboxylic carbonyl carbon at  $\delta_{\rm C}$  180.5 (C-28) with H-3 at  $\delta_{\rm H}$  5.23. The double bond was located between C-24 and C-25, as determined by the presence of the HMBC correlations of the proton at  $\delta_{\rm H}$  5.10 (H-24) with two methyl carbons at  $\delta_{\rm C}$  17.6 (C-26) and 25.7 (C-27). The cyclopropane ring formation involving C-9, C-10, and C-19 was determined by the presence of the HMBC crosspeaks of the protons at  $\delta_{\rm H}$  0.39 and 0.64 (CH<sub>2</sub>-19) to the carbons at  $\delta_{\rm C}$  44.3 (C-5) and 47.5 (C-8). The acetoxy group was assigned at C-3 due to the presence of the HMBC correlations between

Received:January 8, 2011Published:April 06, 2011



H-3 and the carbonyl carbon of the acetyl group at  $\delta_{\rm C}$  170.2. This was also supported by the downfield chemical shift of H-3 at  $\delta_{\rm H}$  5.23.

The relative configuration of 1 was defined on the basis of analysis of <sup>1</sup>H-<sup>1</sup>H vicinal coupling constants and NOE interactions. H-3 displayed a gauche (5.0 Hz) and an anti (12.0 Hz) coupling constant, indicating its axial disposition on the A-ring. In addition, H-5 appeared as a doublet of doublets in the <sup>1</sup>H NMR spectrum with small (4.0 Hz) and large (12.5 Hz) coupling constants, suggesting its axial orientation. In the NOESY spectrum, the proton H<sub> $\beta$ </sub> of CH<sub>2</sub>-19 of the cyclopropane ring at  $\delta_{\rm H}$ 0.64 correlated with the protons at  $\delta_{\rm H}$  1.22 (CH<sub>3</sub>-29) and 1.58 (H-8). The latter proton (H-8) showed a further cross-peak with the protons at  $\delta_{\rm H}$  0.95 (CH<sub>3</sub>-18). This observation indicated that H-8, CH<sub>2</sub>-19, CH<sub>3</sub>-18, and CH<sub>3</sub>-29 were cofacial. In addition, CH<sub>3</sub>-30 at  $\delta_{\rm H}$  0.90 exhibited a cross-peak with H<sub> $\alpha$ </sub> of CH<sub>2</sub>-11 at  $\delta_{\rm H}$  1.99 that suggested a boat conformation for the C-ring. The structure of 1 was finally established as drawn in Figure 1B. This new cycloartane was identified as  $3\beta$ -O-acetylcycloart-24-en-28oic acid and named bonianic acid A. Cycloartane triterpenoids bearing carboxylic functions are rare in nature.<sup>11a,b</sup>

Compound **2** was obtained in microcrystalline form and was optically active,  $[\alpha]^{25}{}_{\rm D}$  +68 (*c* 0.4, CHCl<sub>3</sub>). The negative HRESI mass spectrum exhibited the base peak at *m*/*z* 513.3595 [M – H]<sup>-</sup>, vsuggesting a molecular formula of C<sub>32</sub>H<sub>50</sub>O<sub>5</sub>. The <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data of **2** were similar to those of **1**, except for the presence of a carbonyl group at  $\delta_{\rm C}$  215.5 and a methine function at  $\delta_{\rm C}$  40.8 and  $\delta_{\rm H}$  2.64 (CH-25) instead of the olefinic signals in **1**. 2D NMR analysis allowed the determination of a planar structure for **2**. The presence of a C-24 keto group was shown by the presence of the HMBC cross-peaks of the carbonyl at  $\delta_{\rm C}$  215.5 (C-24) with two methyl groups CH<sub>3</sub>-26 and CH<sub>3</sub>-27 at  $\delta_{\rm H}$  1.12, as well as with

the protons at  $\delta_{\rm H}$  2.40 and 2.51 (CH<sub>2</sub>-23). The C-28 carboxylic carbon was confirmed by the <sup>3</sup>*J*-HMBC correlation with the proton at  $\delta_{\rm H}$  5.22 (H-3). H-3 was further correlated to the carbon at  $\delta_{\rm C}$  10.1 (C-29), the carbonyl of the acetyl group at  $\delta_{\rm C}$  170.2, and the carbon at  $\delta_{\rm C}$  44.2 (C-5), depicting the linkage of the acetate group to C-3.

Analyses of <sup>1</sup>H<sup>-1</sup>H vicinal coupling constants and NOE interactions showed that this compound had the same relative configuration as 1: H-3 had a *gauche* (J = 4.5 Hz) and a *trans*-diaxial (J = 12.5 Hz) coupling constant, indicating its axial disposition on the A-ring. Similarly, H-5 was a doublet of doublets (J = 4.0 and 12.5 Hz) in the <sup>1</sup>H NMR spectrum and had a NOE interaction with H-3. An axial orientation was thus assigned for H-5. Similar to 1, a boat conformation of the C-ring was also observed for 2, which was determined from the presence of the NOE interaction of the protons at  $\delta_{\rm H}$  0.88 (CH<sub>3</sub>-30) with the proton at  $\delta_{\rm H}$  1.99 (H<sub> $\alpha$ </sub> of CH<sub>2</sub>-11). Compound 2 was thus 3 $\beta$ -O-acetylcycloart-24-one-28-oic acid and named bonianic acid B.

Compound 3, a microcrystalline solid, was optically active,  $[\alpha]_{D}^{30}$  +34 (*c* 0.5, CHCl<sub>3</sub>). The base peak was observed at *m*/*z* 531.3693 for  $[M + H]^+$  in its positive mass spectrum, suggesting a molecular formula of  $C_{32}H_{50}O_6$ . The <sup>1</sup>H NMR spectrum exhibited signals of eight methyl groups (seven singlets and one doublet). The <sup>13</sup>C NMR and DEPT spectra showed the presence of 32 carbons, including the presence of an acetyl group. The NMR signals of 3 resembled those of uncaric acid,<sup>12</sup> except for the additional signal of an acetyl group and the signal of H-3 shifted downfield at  $\delta_{
m H}$  4.45. Analyses of the 2D NMR allowed to assign the structure of 3 as shown. The acetyl group at C-3 was established from the presence of the HMBC correlation of the proton at  $\delta_{\rm H}$  4.45 (H-3) with the carbonyl carbon at  $\delta_{\rm C}$  171.0 of the acetyl group. The  $\beta$ -configuration of the C-3 substituent was determined from vicinal coupling constants of H-3, which exhibited a gauche (J = 4.0 Hz) and an anti (J = 11.5 Hz) coupling constant. Similarly, H-6 appeared as a broad singlet in the <sup>1</sup>H NMR spectrum, indicating its equatorial orientation. Comparison of the chemical shifts of C-19 of 3 ( $\delta_{\rm C}$  73.2 in CDCl<sub>3</sub>) and uncaric acid ( $\delta_{\rm C}$  72.2 in CDCl<sub>3</sub>+pyridine- $d_5$ )<sup>12</sup> suggested the  $\alpha$ -orientation of the C-19 OH group for 3. The compound was determined as  $3\beta$ -O-acetyl- $6\beta$ ,19 $\alpha$ -diol-12-ursen-28-oic acid and was named 3-O-acetyluncaric acid.

The known compounds, ursolic acid (4),<sup>4</sup> oleanolic acid (5),<sup>5</sup> 3-epi-oleanolic acid (6),<sup>6</sup>  $3\alpha$ -O-acetyl- $\alpha$ -boswellic acid (7),<sup>7</sup> ergosterol peroxide (8),<sup>8</sup> and  $\beta$ -sitostenone (9),<sup>9</sup> were also isolated and characterized. Their NMR data were compared with reported data.

The fractions obtained from the first chromatography column were evaluated for their activity against *M. tuberculosis* H<sub>37</sub>Rv. Subsequent separation of the active fractions led to the isolation of the pure compound ergosterol peroxide (8) with an MIC value of 3.5  $\mu$ M, followed by the new triterpene bonianic acid B (2) (MIC value: 9.9  $\mu$ M) (Table 2). It is important to note that ergosterol peroxide (8) had no toxicity against Vero cells at 200  $\mu$ M, while bonianic acid B (2) exhibited weak cytotoxicity with an IC<sub>50</sub> value of 74.2  $\mu$ M. Furthermore, the new compound bonianic acid A (1) demonstrated moderate anti-TB activity with an MIC value of 34.8  $\mu$ M. The other compounds showed no or weak anti-TB activity. The activity and selectivity of ergosterol peroxide (8) are consistent with previous reports.<sup>13a,b</sup>

# Table 1. NMR Data for Compounds 1–3 (CDCl<sub>3</sub>, <sup>1</sup>H: 500 MHz, <sup>13</sup>C: 125 MHz)

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                       | 1                           |                       | 2                           |                       | 3                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|-----------------------------|-----------------------|-----------------------------|-----------------------|-----------------------------|
| 1 $3.1, CH_2$ $1.30, m$ $1.0, CH_2$ $1.30, m$ $40.3, CH_2$ $1.08, m$ 2 $2.60, CH_2$ $1.61, n$ $2.60, CH_2$ $1.60, m$ $2.35, CH_2$ $1.65, m$ 3 $77.3, CH$ $5.23, d4(50, 12.0)$ $76. CH$ $5.22, 4(4.5, 12.0)$ $80, CH$ $4.54, d4(40, 11.8)$ 4 $52.9, C$ $38.6, CH$ $3.50, CH_2$ $9.9, m$ $86.6, CH$ $4.54, d4(40, 11.8)$ 6 $2.27, CH_2$ $0.98, m$ $2.27, CH_2$ $0.97, m$ $86.6, CH$ $4.54, b t s^{-1}$ 7 $2.53, CH_2$ $1.17, m$ $2.53$ $1.17, m$ $3.6, CH$ $4.9b t s^{-1}(4.5)$ $32, a$ $1.26, m$ $1.26, m$ $1.23, m$ $3.17, CH$ $4.9b t s^{-1}(4.5)$ 9 $20.3, C$ $1.69, m$ $3.27, CH_1$ $1.58, m$ $3.4, CH$ $1.69, m$ 10 $24.9, C$ $1.58, m$ $3.5, CH_2$ $1.69, m$ $3.5, CH_2$ $3.53, CH_2$ $1.99, m$ 12 $5.2, CH_2$ $1.64, m$ $5.2, CH_2$ $1.60, m$ $1.7, m$ $3.6, CH_2$ $1.69, m$ 13 </th <th>position</th> <th><math>\delta_{\rm C}</math></th> <th><math>\delta_{\rm H}</math> m (J, Hz)</th> <th><math>\delta_{\rm C}</math></th> <th><math>\delta_{ m H}</math> m (J, Hz)</th> <th><math>\delta_{\rm C}</math></th> <th><math>\delta_{\rm H}</math> m (J, Hz)</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | position | $\delta_{\rm C}$      | $\delta_{\rm H}$ m (J, Hz)  | $\delta_{\rm C}$      | $\delta_{ m H}$ m (J, Hz)   | $\delta_{\rm C}$      | $\delta_{\rm H}$ m (J, Hz)  |
| 174, dol (35, 135, 135)         176, m         160, m         160, m           2         260, CH <sub>2</sub> 164, m         258, CH <sub>2</sub> 166, m         174, m           3         773, CH         523, d (50, 120)         769, CH         522, d (45, 120)         806, CH         436, 640, 11.5)           4         523, CF         233, d (40, 12.5)         412, CH         212, d (40, 12.5)         816, CH         886, CH           5         413, CH         210, d (40, 12.5)         412, CH         212, d (40, 12.5)         557, CH         877, m           6         227, CH, 0.98, m         227, CH, 0.98, m         238, CH         149, b c (14.5)           126, m         125, m         127, m         386, CH         49, b c (14.5)           7         253, CH, 1.58, m         232, CH         149, b c (14.5)         132, m           137         75, CH         158, m         391, C         132, m           14         455, CH, 1.17, m         202, C         364, CH         169, m           117         238, CH, 1.46, m         327, CH, 1.99, m         216, CH         368, CH         368, CH           128         354, CH, 1.29, m         327, CH, 1.99, m         313, m         555, CH         538, (455)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1        | 31.1, CH <sub>2</sub> | 1.30, m                     | 31.0, CH <sub>2</sub> | 1.30, m                     | 40.3, CH <sub>2</sub> | 1.08, m                     |
| 2       260, CH <sub>2</sub> 1.61, m       260, CH <sub>2</sub> 1.60, m       233, CH <sub>2</sub> 1.64, m         3       77.3, CH       52.3, dd (5.0, 12.0)       7.0, CH       52.2, d (4.5, 12.0)       80.9, CH       44.5, dd (4.0, 11.5)         4       52.9, C       52.9, C       55.7, CH       55.7, CH       85.7, CH       85.7, CH         5       44.3, CH       210, dd (4.0, 12.5)       44.2, CH       12.4, dt (4.0, 12.5)       85.7, CH       45.4, br 3         7       23.5, CH <sub>3</sub> 1.17, m       23.7, CH       12.6, m       12.4, m       12.4, m         7       23.5, CH <sub>3</sub> 1.17, m       132, m       32.7, m       14.9, br d (4.5)         9       0.3, C       1.32, m       32.7, CH       1.35, m       39.1, C       1.69, m         10       24.9, C       1.17, m       1.58, m       39.1, C       1.69, m       1.61, m         11       26.5, CH <sub>2</sub> 1.17, m       1.58, m       39.1, C       1.64, m       1.62, m       1.64, m       1.61, m         13       44.5, CH       1.44, m       1.17, m       1.64, M       1.62, m       1.74, M       1.64, m         14       48.5, CH       1.17, m       1.52, CH       1.65, m       1.74, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                       | 1.74, ddd (3.5, 13.5, 13.5) |                       | 1.76, m                     |                       | 1.60, m                     |
| 195,m195,m195,m17,4,m373,CH52,3 d (50,120)769,CH52,4 (4.5,120)80,0445,d (4,1.1.5)522,7,CH10,8 (4.0,12.5)442,CH12,3 (4.6,12.5)55,7,CH85,7,m622,7,CH10,8 (4.0,12.5)12,4 (4.6,12.5)55,7,CH85,7,m725,3,CH117,m25,3117,m40,7,CH1.4,9 br (14.5)126,m124,m132,m132,m14,9 br (14.5)725,3,CH117,m25,3117,m39,1,C847,5,CH158,m47,4,CH1.58,m39,1,C920,3,C125,0,CH36,4,CH36,4,CH36,4,CH1024,9,C117,m26,4,CH117,m36,4,CH1126,5,CH117,m129,CH129,CH53,8 (1,5)1232,8,CH124,m26,3,CH131,m129,CH53,8 (1,5)1345,3,C129,m48,8,C131,m129,CH14,4 (4.5,1,5,1,5)1445,8,CH129,m131,m124,5134,6 (4.5,1,5,1,5)1532,CH129,m139,m132,1 (4.4,5,1,5,1,5)134,6 (4.5,1,5,1,5)1623,CH129,m129,CH134,m134,m1752,CH129,m134,1 (4.5,1,1,1,1,1134,m1870,9,GH30,9,(A'S)135,7 CH138,m134,1 (4.5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2        | 26.0, CH <sub>2</sub> | 1.61, m                     | 26.0, CH <sub>2</sub> | 1.60, m                     | 23.8, CH <sub>2</sub> | 1.65, m                     |
| 3       77, 3, CH       523, 3d (so, 12.0)       769, CH       522, C       809, CH       445, 3d (40, 11.5)         4       52.9, C       529, C       386, CH       845, CH       0.87, m         5       443, CH       2.10, dd (40, 12.5)       42, CH       2.12, dd (40, 12.5)       857, CH       0.87, m         6       2.7, CH <sub>2</sub> 0.98, m       227, CH <sub>2</sub> 0.97, m       66, CH       454, br s         7       2.53, CH <sub>2</sub> 1.17, m       2.53       1.17, m       1.24, m       30.1, C       -         7       2.53, CH <sub>2</sub> 1.17, m       2.50, C       30.1, C       -       -         9       20.3, C       2.50, C       30.1, C       2.05, CH       1.62, m       329, CH       2.05, CH         10       2.49, C       1.17, m       2.51, CH       1.62, m       1.29, CH       5.38, t (3.5)         11       2.55, CH       1.17, m       327, CH       1.62, m       1.29, CH       5.38, t (3.5)         12       3.28, CH       1.46, m       3.53, CH       1.62, m       1.29, CH       5.38, t (3.5)         14       4.88, C       -       488, C       1.24, m       1.29, m       1.31, m         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                       | 1.95, m                     |                       | 1.95, m                     |                       | 1.74, m                     |
| 4       329, C       529, C       386, C         5       443, CH       210, dd (40, 12.5)       442, CH       212, dd (40, 12.5)       557, CH       0.87, m         6       227, CH <sub>2</sub> 0.99, m       686, CH       4.54, br s         126, m       124, m       686, CH       4.54, br s         7       23.3, CH       117, m       23.3, m       117, m       686, CH       1.49, br d (14.5)         32, n       32, n       32, n       74, CH       1.58, m       91, C       169, m         9       20.3, C       20.2, C       364, CH <sub>2</sub> 1.7, m       364, CH       1.69, m         10       265, CH <sub>2</sub> 1.17, m       264, CH <sub>2</sub> 1.17, m       326, CH       365, CH       5.38, t (35)         11       265, CH <sub>2</sub> 1.17, m       264, CH <sub>2</sub> 1.29, m       129, M       5.38, t (35)         12       328, CH <sub>4</sub> 1.64, m       1.22, CH       1.28, m       1.29, m       129, M       1.48, C         13       453, CH       1.28, m       32, CH       1.29, m       28, CH <sub>2</sub> 1.04, m         14       488, C       1.29, m       1.21, m       29, CH       3.33, CH       1.29, m       29, CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3        | 77.3, CH              | 5.23, dd (5.0, 12.0)        | 76.9, CH              | 5.22, d (4.5, 12.0)         | 80.9, CH              | 4.45, dd (4.0, 11.5)        |
| S       443, CH       210, dd (40, 12.5)       442, CH       212, dd (40, 12.5)       SS7, CH       0.87, m         6       227, CH       0.98, m       227, CH       0.97, m       666, CH       4.54, b * s         7       253, CH       1.17, m       25.3       1.17, m       407, CH       1.49, br d (14.5)         1.32, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4        | 52.9, C               |                             | 52.9, C               |                             | 38.6, C               |                             |
| 6         2.7, CH <sub>3</sub> 9.98, m         2.27, CH <sub>3</sub> 9.07, m         686, CH         4.34, br s           7         2.53, CH <sub>3</sub> 1.17, m         2.53         1.17, m         40.7, CH <sub>3</sub> 4.49, br d (4.5)           8         47.5, CH <sub>3</sub> 1.33, m         1.32, m         1.32, m         1.32, m           8         47.5, CH <sub>3</sub> 1.58, m         47.4, CH         1.58, m         3.9, L         47.4, CH         1.69, m           9         0.5, C         2.50, C         47.4, CH         1.58, m         3.9, L         47.4, CH         1.69, m           10         2.49, C         2.50, C         3.64, CH         3.64, CH         3.64, CH         3.53, CH         3.64, CH         3.53, CH         3.54, CH         3.53, CH         1.62, m         3.53, CH         4.53, C         1.59, m         7.7, C         1.74, m           14         4.53, C H <sub>2</sub> 1.28, m         3.53, CH <sub>2</sub> 1.31, m         2.55, CH         1.60, m         1.74, m           15         5.4, CH <sub>2</sub> 1.29, m         2.54, CH         1.59, m         4.54, CH         1.50, m           16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 44.3, CH              | 2.10, dd (4.0, 12.5)        | 44.2, CH              | 2.12, dd (4.0, 12.5)        | 55.7, CH              | 0.87, m                     |
| 126, m         124, m         124, m         124, m         147, m         123, m         147, m         132, m         149, m         149, br d (14.5)           8         475, CH         158, m         474, CH         158, m         391, C         169, m           9         203, C         202, C         202, C         74, CH         169, m         169, m           10         249, C         17, m         202, C         17, m         236, CH         169, m         169, m           11         265, CH2         117, m         264, CH2         117, m         235, CH         538, t (35)           12         328, CH2         164, m         327, CH2         162, m         129, CH2         164, m           13         453, C         453, CH         164, m         129, CH2         129, m         129, CH2         124, m           14         488, C         128, m         328, CH2         131, m         255, CH2         160, m           17         522, CH1         139, m         520, CH2         134, m         255, CH2         164, d (45, 135, 135, 135)           18         179, CH2         039, d (45)         227, CH3         139, m         321, CH2         134, m           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6        | 22.7, CH <sub>2</sub> | 0.98, m                     | 22.7, CH <sub>2</sub> | 0.97, m                     | 68.6, CH              | 4.54, br s                  |
| 7       253, CH2       1.17, m       25.3       1.17, m       40.7, CH2       1.49, br d (14.5)         8       47.5, CH       1.58, m       7.4, CH       1.58, m       39.1, C         9       20.3, C       20.2, C       47.4, CH       1.69, m         10       24.9, C       25.0, C       36.4, C       20.5, CH2       36.4, CH2         11       26.5, CH2       1.17, m       26.0, CH2       36.6, CH2       2.05, m         12       32.8, CH2       1.64, m       32.7, CH2       1.62, m       129.5, CH1       5.38, t (3.5)         13       45.3, C       45.3, C       45.3, CH2       1.29, m       1.29, m       35.4, CH2       1.48, R         14       48.8, C       48.8, C       41.8, C       1.49, m       1.74, m       1.49, m       1.50, m       1.51, m <td< td=""><td></td><td></td><td>1.26, m</td><td></td><td>1.24, m</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                       | 1.26, m                     |                       | 1.24, m                     |                       |                             |
| 1.32, m       1.32, m       1.32, m       1.32, m         8       47.5, CH       1.58, m, A       47.4, CH       1.58, m, A       9.1, C       1.69, m         9       20.3, C       20.2, C       7.4, CH       1.69, m         10       24.9, C       25.0, CL       36.4, CL       1.69, m         11       26.5, CH <sub>2</sub> 1.17, m       26.4, CH <sub>2</sub> 1.7, m       36.4, CL       2.05, m         12       32.8, CH <sub>2</sub> 1.64, m       32.7, CH <sub>2</sub> 1.62, m       129.5, CH       5.38, t (3.5)         13       45.3, C       45.3, C       45.3, C       129, m       1.64, m <t< td=""><td>7</td><td>25.3, CH<sub>2</sub></td><td>1.17, m</td><td>25.3</td><td>1.17, m</td><td>40.7, CH<sub>2</sub></td><td>1.49, br d (14.5)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7        | 25.3, CH <sub>2</sub> | 1.17, m                     | 25.3                  | 1.17, m                     | 40.7, CH <sub>2</sub> | 1.49, br d (14.5)           |
| 8       47.5, CH       1.58, m       47.4, CH       1.58, m       91, C         9       20.3, C       20.2, C       7.4, CH       1.69, m         10       24.9, C       25.0, CL       36.4, CL       23.6, CH2       2.05, m         11       26.5, CH2       1.17, m       26.4, CH2       1.17, m       23.6, CH2       2.05, m         12       32.8, CH2       1.64, m       32.7, CH2       1.62, m       129.5, CH       5.38, t (3.5)         13       45.3, C       45.3, C       45.3, C       137.1, C       14.8, C       1.64, m       32.7, CH2       1.29, m       2.81, CH2       1.04, m         14       48.8, C       1.28, m       35.3, CH2       1.31, m       2.55, CH2       1.04, m         16       28.1, CH2       1.29, m       5.2, CH       1.59, m       5.2, CH       1.60, m         17       5.2, 2, CH       1.59, m       5.2, CH       1.99, m       47.7, C       2.51, ddd (4.5, 13.5, 13.5)         17       5.2, CH2       0.39, d (4.5)       2.6, CH2       0.39, d (4.5)       2.6, CH2       0.42, d (4.5)       7.2, C         18       1.79, CH4       0.95, S       1.79, CH3       0.88, d (6.5)       1.31, m       1.6, CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       | 1.32, m                     |                       | 1.32, m                     |                       |                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8        | 47.5, CH              | 1.58, m                     | 47.4, CH              | 1.58, m                     | 39.1, C               |                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9        | 20.3, C               |                             | 20.2, C               |                             | 47.4, CH              | 1.69, m                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10       | 24.9, C               |                             | 25.0, C               |                             | 36.4, C               |                             |
| 199, m199, m199, m12 $32, CH_2$ $1.64, m$ $327, CH_2$ $1.62, m$ $129, CH$ $5.38, t (3.5)$ 13 $45.3, C$ $45.3, C$ $45.3, C$ $132, m$ $129, CH$ $5.38, t (3.5)$ 14 $48.8, C$ $48.8, C$ $132, m$ $118, C$ $118, C$ 15 $35.4, CH_2$ $1.28, m$ $35.3, CH_2$ $1.29, m$ $28.1, CH_2$ $1.04, m$ $16$ $28.1, CH_2$ $1.29, m$ $28.0, CH_2$ $1.31, m$ $25.5, CH_2$ $1.60, m$ $17$ $52.2, CH$ $1.59, m$ $52.2, CH$ $1.59, m$ $47.7, C$ $52.4, 6H$ $5.9, m$ $47.7, C$ 18 $17.9, CH_3$ $0.95, s$ $17.9, CH_3$ $0.94, s$ $52.9, CH$ $2.54, s$ $52.9, CH$ 19 $2.6, CH_2$ $0.39, d (4.5)$ $29.6, CH_2$ $0.42, d (4.5)$ $73.2, C$ $-17.1, m$ 21 $18.3, CH_3$ $0.88, d (6.5)$ $18.1, CH_3$ $0.88, d (6.5)$ $26.0, CH_2$ $1.31, m$ 22 $3.6.3, CH_2$ $1.04, m$ $30.1, CH_2$ $1.25, m$ $37.3, CH_2$ $1.65, m$ 23 $25.0, CH_3$ $1.04, fm$ $30.1, CH_2$ $1.24, do.) dol (6.0, 9.5, 16.5)2.9, CH_31.20, s24125.2, CH_31.04, fm1.55, C18.1, CH_31.24, (7.0)17.0, CH_31.33, s25130, PC408, CH2.44, eet (7.0)17.0, CH_31.33, s1.65, s251.02, CH_31.04, CH_31.81, CH_31.24, (7.0)1.44, CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11       | 26.5, CH <sub>2</sub> | 1.17, m                     | 26.4, CH <sub>2</sub> | 1.17, m                     | 23.6, CH <sub>2</sub> | 2.05, m                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                       | 1.99, m                     |                       | 1.99, m                     |                       |                             |
| $ \begin{array}{ c c c c } 13 & 45.3, \mathbb{C} & 45.3, \mathbb{C} & 45.3, \mathbb{C} & 137.1, \mathbb{C} & 14.8, \mathbb{C} & 17.4, \mathbb{C} & 1.60, \mathbb{C} & 1.90, \mathbb{C} & 1.91, \mathbb{C} & 25.5, \mathbb{C} \mathbb{C} & 1.60, \mathbb{C} & 1.90, \mathbb{C} & 1.91, \mathbb{C} & 25.5, \mathbb{C} \mathbb{C} & 1.60, \mathbb{C} & 1.90, \mathbb{C} & 1.91, \mathbb{C} & 25.1, \mathrm{ddd} (4.5, 13.5, 13.5) & 17.5, \mathbb{C} & 25.2, \mathbb{C} \mathrm{H} & 1.59, \mathbb{C} & 1.59, \mathbb{C} & 47.7, \mathbb{C} & 25.4, \mathrm{s} & 32.9, \mathbb{C} \mathrm{H} & 1.59, \mathbb{C} & 32.9, \mathbb{C} \mathrm{H} & 25.9, \mathbb{C} \mathrm{H} & 0.39, \mathrm{d} (4.5) & 29.6, \mathbb{C} \mathbb{C} & 0.42, \mathrm{d} (4.5) & 22.9, \mathbb{C} \mathrm{H} & 2.54, \mathrm{s} & 3.9, \mathbb{C} & 3.59, \mathbb{C} \mathrm{H} & 1.39, \mathbb{C} & 0.42, \mathrm{d} (4.5) & 26.0, \mathbb{C} \mathrm{C} & 2.54, \mathrm{s} & 1.31, \mathbb{C} & 1.39, \mathbb{C} & 1.31, \mathbb{C} & 1.33, \mathbb{C} & 1.31, \mathbb{C} & 1.3$ | 12       | 32.8, CH <sub>2</sub> | 1.64, m                     | 32.7, CH <sub>2</sub> | 1.62, m                     | 129.5, CH             | 5.38, t (3.5)               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13       | 45.3, C               |                             | 45.3, C               |                             | 137.1, C              |                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14       | 48.8, C               |                             | 48.8, C               |                             | 41.8, C               |                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15       | 35.4, CH <sub>2</sub> | 1.28, m                     | 35.3, CH <sub>2</sub> | 1.29, m                     | 28.1, CH <sub>2</sub> | 1.04, m                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                       |                             |                       |                             |                       | 1.74, m                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16       | 28.1,CH <sub>2</sub>  | 1.29, m                     | 28.0, CH <sub>2</sub> | 1.31, m                     | 25.5, CH <sub>2</sub> | 1.60, m                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                       | 1.90, m                     |                       | 1.91, m                     |                       | 2.51, ddd (4.5, 13.5, 13.5) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17       | 52.2, CH              | 1.59, m                     | 52.2, CH              | 1.59, m                     | 47.7, C               |                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18       | 17.9, CH <sub>3</sub> | 0.95, s                     | 17.9, CH <sub>3</sub> | 0.94, s                     | 52.9, CH              | 2.54, s                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19       | 29.6, CH <sub>2</sub> | 0.39, d (4.5)               | 29.6, CH <sub>2</sub> | 0.42, d (4.5)               | 73.2, C               |                             |
| 20       35.9, CH       1.39, m       35.7, CH       1.38, m       41.1, CH       1.39, m         21       18.3, CH <sub>3</sub> 0.88, d (6.5)       18.1, CH <sub>3</sub> 0.88, d (6.5)       26.0, CH <sub>2</sub> 1.31, m         22       36.3, CH <sub>2</sub> 1.04, m       30.1, CH <sub>2</sub> 1.25, m       37.3, CH <sub>2</sub> 1.65, m         24       1.44, m       1.77, m       1.81, m       1.81, m         23       25.0, CH <sub>2</sub> 1.88, m       37.5, CH <sub>2</sub> 2.40, ddd (6.0, 9.5, 16.5)       27.9, CH <sub>3</sub> 0.96, s         24       125.2, CH       5.10, dd (7.0, 7.0)       215.5, C       18.3, CH <sub>3</sub> 1.26, s         25       130.9, C       40.8, CH       2.64, sept (7.0)       17.0, CH <sub>3</sub> 1.33, s         26       17.6, CH <sub>3</sub> 1.60, s       18.3, CH <sub>3</sub> 1.12, d (7.0)       17.9, CH <sub>3</sub> 1.05, s         27       25.7, CH <sub>3</sub> 1.68, s       18.4, CH <sub>3</sub> 1.12, d (7.0)       24.4, CH <sub>3</sub> 1.22, s         28       180.5, C       181.0, C       183.8, C       183.8, C       183.8, C         29       10.1, CH <sub>3</sub> 1.22, s       183.8, C       1.22, s       1.22, s         30       19.2, CH <sub>3</sub> 0.90, s       192, CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                       | 0.64, d (4.5)               |                       | 0.67, d (4.5)               |                       |                             |
| 21       18.3, CH <sub>3</sub> 0.88, d (6.5)       18.1, CH <sub>3</sub> 0.88, d (6.5)       26.0, CH <sub>2</sub> 1.31, m         22       36.3, CH <sub>2</sub> 1.04, m       30.1, CH <sub>2</sub> 1.25, m       37.3, CH <sub>2</sub> 1.65, m         24       1.44, m       1.77, m       1.81, mA         23       25.0, CH <sub>2</sub> 1.88, m       37.5, CH <sub>2</sub> 2.40, ddd (6.0, 9.5, 16.5)       27.9, CH <sub>3</sub> 0.96, s         24       125.2, CH       5.10, dd (7.0, 7.0)       215.5, C       18.3, CH <sub>3</sub> 1.26, s         25       130.9, C       40.8, CH       2.64, sept (7.0)       17.0, CH <sub>3</sub> 1.33, s         26       17.6, CH <sub>3</sub> 1.60, s       18.3, CH <sub>3</sub> 1.12, d (7.0)       17.9, CH <sub>3</sub> 1.05, s         27       25.7, CH <sub>3</sub> 1.68, s       184, CH <sub>3</sub> 1.12, d (7.0)       144, CH <sub>3</sub> 1.22, s         28       180.5, C       181.0, C       183.8, C       181.0, C       183.8, C       183.8, C         29       10.1, CH <sub>3</sub> 1.22, s       10.1, CH <sub>3</sub> 1.21, s       27.4, CH <sub>3</sub> 0.94, d (6.5)         30       19.2, CH <sub>3</sub> 0.90, s       19.2, CH <sub>3</sub> 0.88, s       16.1, CH <sub>3</sub> 0.94, d (6.5)         31       170.2, C<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20       | 35.9, CH              | 1.39, m                     | 35.7, CH              | 1.38, m                     | 41.1, CH              | 1.39, m                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21       | 18.3, CH <sub>3</sub> | 0.88, d (6.5)               | 18.1, CH <sub>3</sub> | 0.88, d (6.5)               | 26.0, CH <sub>2</sub> | 1.31, m                     |
| 22       36.3, CH2       1.04, m       30.1, CH2       1.25, m       37.3, CH2       1.65, m         23       25.0, CH2       1.88, m       37.5, CH2       2.40, ddd (6.0, 9.5, 16.5)       27.9, CH3       0.96, s         24       125.2, CH       5.10, dd (7.0, 7.0)       215.5, C       18.3, CH3       1.26, s       1.26, s         25       130.9, C       40.8, CH       2.64, sept (7.0)       17.0, CH3       1.33, s         26       17.6, CH3       1.60, s       183, CH3       1.12, d (7.0)       17.9, CH3       1.05, s         27       25.7, CH3       1.68, s       184, CH3       1.12, d (7.0)       244, CH3       1.22, s         28       180.5, C       181.0, C       183.8, C       181.0, C       183.8, C         29       10.1, CH3       1.22, cH3       0.90, s       19.2, CH3       0.88, s       16.1, CH3       1.22, s         30       19.2, CH3       0.90, s       19.2, CH3       0.88, s       16.1, CH3       0.94, d (6.5)         31       170.2, C       170.2, C       170.2, C       171.0, C       171.0, C         32       21.1, CH3       1.99, s       21.1, CH3       1.99, s       21.3, CH3       2.06, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | -                     |                             | -                     |                             |                       | 1.71, m                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22       | 36.3, CH <sub>2</sub> | 1.04, m                     | 30.1, CH <sub>2</sub> | 1.25, m                     | 37.3, CH <sub>2</sub> | 1.65, m                     |
| 23       25.0, CH2       1.88, m       37.5, CH2       2.40, ddd (6.0, 9.5, 16.5)       27.9, CH3       0.96, s         24       125.2, CH       5.10, dd (7.0, 7.0)       215.5, C       18.3, CH3       1.26, s         25       130.9, C       40.8, CH       2.64, sept (7.0)       17.0, CH3       1.33, s         26       17.6, CH3       1.60, s       18.3, CH3       1.12, d (7.0)       17.9, CH3       1.05, s         27       25.7, CH3       1.68, s       184, CH3       1.12, d (7.0)       24.4, CH3       1.22, s         28       180.5, C       181.0, C       183.8, C       183.8, C       181.0, C       183.8, C         29       10.1, CH3       1.22, s       10.1, CH3       1.22, CH3       0.88, s       16.1, CH3       0.94, d (6.5)         30       19.2, CH3       0.90, s       192, CH3       0.88, s       16.1, CH3       0.94, d (6.5)         31       170.2, C       170.2, C       170.2, C       171.0, C       171.0, C         32       21.1, CH3       1.99, s       21.1, CH3       1.99, s       21.3, CH3       2.06, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                       | 1.44, m                     |                       | 1.77, m                     |                       | 1.81, m                     |
| 2.06, m       2.51, ddd (5.0, 10.0, 16.5)         24       125.2, CH       5.10, dd (7.0, 7.0)       215.5, C       18.3, CH <sub>3</sub> 1.26, s         25       130.9, C       40.8, CH       2.64, sept (7.0)       17.0, CH <sub>3</sub> 1.33, s         26       17.6, CH <sub>3</sub> 1.60, s       18.3, CH <sub>3</sub> 1.12, d (7.0)       17.9, CH <sub>3</sub> 1.05, s         27       25.7, CH <sub>3</sub> 1.68, s       184, CH <sub>3</sub> 1.12, d (7.0)       24.4, CH <sub>3</sub> 1.22, s         28       180.5, C       181.0, C       183.8, C       183.8, C       183.8, C       19.2, CH <sub>3</sub> 1.22, s         30       19.2, CH <sub>3</sub> 0.90, s       19.2, CH <sub>3</sub> 0.90, s       19.2, CH <sub>3</sub> 0.94, d (6.5)         31       170.2, C       170.2, C       170.2, C       171.0, C       171.0, C         32       21.1, CH <sub>3</sub> 1.99, s       21.1, CH <sub>3</sub> 1.99, s       21.3, CH <sub>3</sub> 2.06, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23       | 25.0, CH <sub>2</sub> | 1.88, m                     | 37.5, CH <sub>2</sub> | 2.40, ddd (6.0, 9.5, 16.5)  | 27.9, CH <sub>3</sub> | 0.96, s                     |
| 24       125.2, CH       5.10, dd (7.0, 7.0)       215.5, C       18.3, CH <sub>3</sub> 1.26, s         25       130.9, C       40.8, CH       2.64, sept (7.0)       17.0, CH <sub>3</sub> 1.33, s         26       17.6, CH <sub>3</sub> 1.60, s       18.3, CH <sub>3</sub> 1.12, d (7.0)       17.9, CH <sub>3</sub> 1.05, s         27       25.7, CH <sub>3</sub> 1.68, s       184, CH <sub>3</sub> 1.12, d (7.0)       24.4, CH <sub>3</sub> 1.22, s         28       180.5, C       181.0, C       183.8, C       183.8, C         29       10.1, CH <sub>3</sub> 1.22, s       10.1, CH <sub>3</sub> 1.21, s       27.4, CH <sub>3</sub> 1.22, s         30       19.2, CH <sub>3</sub> 0.90, s       19.2, CH <sub>3</sub> 0.88, s       16.1, CH <sub>3</sub> 0.94, d (6.5)         31       170.2, C       170.2, C       171.0, C       171.0, C         32       21.1, CH <sub>3</sub> 1.99, s       21.1, CH <sub>3</sub> 1.99, s       21.3, CH <sub>3</sub> 2.06, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                       | 2.06, m                     |                       | 2.51, ddd (5.0, 10.0, 16.5) |                       |                             |
| 25       130.9, C       40.8, CH       2.64, sept (7.0)       17.0, CH <sub>3</sub> 1.33, s         26       17.6, CH <sub>3</sub> 1.60, s       18.3, CH <sub>3</sub> 1.12, d (7.0)       17.9, CH <sub>3</sub> 1.05, s         27       25.7, CH <sub>3</sub> 1.68, s       18.4, CH <sub>3</sub> 1.12, d (7.0)       24.4, CH <sub>3</sub> 1.22, s         28       180.5, C       181.0, C       183.8, C         29       10.1, CH <sub>3</sub> 1.22, s       10.1, CH <sub>3</sub> 1.21, s       27.4, CH <sub>3</sub> 1.22, s         30       19.2, CH <sub>3</sub> 0.90, s       19.2, CH <sub>3</sub> 0.88, s       16.1, CH <sub>3</sub> 0.94, d (6.5)         31       170.2, C       170.2, C       171.0, C       171.0, C         32       21.1, CH <sub>3</sub> 1.99, s       21.1, CH <sub>3</sub> 2.99, s       21.3, CH <sub>3</sub> 2.06, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24       | 125.2, CH             | 5.10, dd (7.0, 7.0)         | 215.5, C              |                             | 18.3, CH <sub>3</sub> | 1.26, s                     |
| 26       17.6, CH <sub>3</sub> 1.60, s       18.3, CH <sub>3</sub> 1.12, d (7.0)       17.9, CH <sub>3</sub> 1.05, s         27       25.7, CH <sub>3</sub> 1.68, s       18.4, CH <sub>3</sub> 1.12, d (7.0)       24.4, CH <sub>3</sub> 1.22, s         28       180.5, C       181.0, C       183.8, C         29       10.1, CH <sub>3</sub> 1.22, s       10.1, CH <sub>3</sub> 1.21, s       27.4, CH <sub>3</sub> 1.22, s         30       19.2, CH <sub>3</sub> 0.90, s       19.2, CH <sub>3</sub> 0.88, s       16.1, CH <sub>3</sub> 0.94, d (6.5)         31       170.2, C       170.2, C       171.0, C       171.0, C         32       21.1, CH <sub>3</sub> 1.99, s       21.1, CH <sub>3</sub> 2.06, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25       | 130.9, C              |                             | 40.8, CH              | 2.64, sept (7.0)            | 17.0, CH <sub>3</sub> | 1.33, s                     |
| 27       25.7, CH <sub>3</sub> 1.68, s       18.4, CH <sub>3</sub> 1.12, d (7.0)       24.4, CH <sub>3</sub> 1.22, s         28       180.5, C       181.0, C       183.8, C         29       10.1, CH <sub>3</sub> 1.22, s       1.21, s       27.4, CH <sub>3</sub> 1.22, s         30       19.2, CH <sub>3</sub> 0.90, s       19.2, CH <sub>3</sub> 0.88, s       16.1, CH <sub>3</sub> 0.94, d (6.5)         31       170.2, C       170.2, C       171.0, C         32       21.1, CH <sub>3</sub> 1.99, s       21.1, CH <sub>3</sub> 1.99, s       21.3, CH <sub>3</sub> 2.06, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26       | 17.6, CH <sub>3</sub> | 1.60, s                     | 18.3, CH <sub>3</sub> | 1.12, d (7.0)               | 17.9, CH <sub>3</sub> | 1.05, s                     |
| 28       180.5, C       181.0, C       183.8, C         29       10.1, CH <sub>3</sub> 1.22, s       10.1, CH <sub>3</sub> 1.21, s       27.4, CH <sub>3</sub> 1.22, s         30       19.2, CH <sub>3</sub> 0.90, s       192, CH <sub>3</sub> 0.88, s       16.1, CH <sub>3</sub> 0.94, d (6.5)         31       170.2, C       170.2, C       171.0, C       171.0, C         32       21.1, CH <sub>3</sub> 1.99, s       21.1, CH <sub>3</sub> 1.99, s       21.3, CH <sub>3</sub> 2.06, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27       | 25.7, CH <sub>3</sub> | 1.68, s                     | 18.4, CH <sub>3</sub> | 1.12, d (7.0)               | 24.4, CH <sub>3</sub> | 1.22, s                     |
| 29       10.1, CH <sub>3</sub> 1.22, s       10.1, CH <sub>3</sub> 1.21, s       27.4, CH <sub>3</sub> 1.22, s         30       19.2, CH <sub>3</sub> 0.90, s       19.2, CH <sub>3</sub> 0.88, s       16.1, CH <sub>3</sub> 0.94, d (6.5)         31       170.2, C       170.2, C       171.0, C         32       21.1, CH <sub>3</sub> 1.99, s       21.1, CH <sub>3</sub> 1.99, s       21.3, CH <sub>3</sub> 2.06, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28       | 180.5, C              |                             | 181.0, C              |                             | 183.8, C              |                             |
| 30       19.2, CH <sub>3</sub> 0.90, s       19.2, CH <sub>3</sub> 0.88, s       16.1, CH <sub>3</sub> 0.94, d (6.5)         31       170.2, C       170.2, C       171.0, C         32       21.1, CH <sub>3</sub> 1.99, s       21.1, CH <sub>3</sub> 1.99, s       21.3, CH <sub>3</sub> 2.06, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29       | 10.1, CH <sub>3</sub> | 1.22, s                     | 10.1, CH <sub>3</sub> | 1.21, s                     | 27.4, CH <sub>3</sub> | 1.22, s                     |
| 31       170.2, C       170.2, C       171.0, C         32       21.1, CH <sub>3</sub> 1.99, s       21.1, CH <sub>3</sub> 2.06, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30       | 19.2, CH <sub>3</sub> | 0.90, s                     | 19.2, CH <sub>3</sub> | 0.88, s                     | 16.1, CH <sub>3</sub> | 0.94, d (6.5)               |
| 32 21.1, CH <sub>3</sub> 1.99, s 21.1, CH <sub>3</sub> 1.99, s 21.3, CH <sub>3</sub> 2.06, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31       | 170.2, C              |                             | 170.2, C              |                             | 171.0, C              | · · · /                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32       | 21.1, CH <sub>3</sub> | 1.99, s                     | 21.1, CH <sub>3</sub> | 1.99, s                     | 21.3, CH <sub>3</sub> | 2.06, s                     |

## EXPERIMENTAL SECTION

General Experimental Procedures. See the Supporting Information. Plant Material. See the Supporting Information.

**Extraction and Isolation.** The dried and ground mixture of the twigs and leaves (5.0 kg) of *R. boniana* was extracted with EtOAc three times at room temperature. The EtOAc extract was concentrated under reduced pressure, and the residue (254 g) was purified by silica gel column chromatography (600 g), eluted with a solvent gradient of

*n*-hexane/EtOAc (4 L) and then EtOAc/MeOH (3 L), to yield 15 fractions. Fraction 3 (16.12 g) was purified by column chromatography over silica gel (150 g), eluted with *n*-hexane/acetone (2–40% of acetone in *n*-hexane, 1.5 L) to afford 9 (14 mg). Fraction 4 (11.91 g) was separated on a silica gel column (150 g) eluting with a gradient of *n*-hexane/EtOAc (5–30% of EtOAc in *n*-hexane, 2.1 L) to give five subfractions. Subfraction 3 (0.7 g) was separated by silica gel column chromatography (20 g), eluted with a mixture of *n*-hexane/EtOAc (5–30% of EtOAc in *n*-hexane, 280 mL), followed by recrystallization



Figure 1. Key HMBC (A) and NOE (B) cross-peaks for 1.



Figure 2. Selected HMBC correlations for 3.

Table 2. Anti-TB Activities of Compounds 1-9

| compd | MIC ( $\mu$ M) | compd    | MIC (µM) |
|-------|----------------|----------|----------|
| 1     | 34.8           | 6        | >200     |
| 2     | 9.9            | 7        | 94.8     |
| 3     | 75.5           | 8        | 3.5      |
| 4     | 94.8           | 9        | 39.5     |
| 5     | 96.5           | rifampin | 0.14     |

from EtOAc to yield 1 (15 mg) and 7 (50 mg). Fraction 6 (12.36 g) was subjected to column chromatography on silica gel (150 g), eluted with a mixture of CH<sub>2</sub>Cl<sub>2</sub>/acetone (5–30% of acetone in CH<sub>2</sub>Cl<sub>2</sub>, 2.4 L), then crystallized from MeOH to afford 2 (13 mg), 3 (7 mg), 5 (100 mg), and 6 (20 mg). Crystallization of fraction 7 (7.0 g) from EtOAc yielded 4 (1.5 g). Fractions 8 and 9 were recombined (13.17 g) and separated on a silica gel column (150 g), eluted with a mixture of *n*-hexane/EtOAc (5–70% of EtOAc in *n*-hexane, 310 mL), to yield five subfractions. Subfraction 3 (2.0 g) was purified by column chromatography on silica gel (10–100% of EtOAc in *n*-hexane, 460 mL), followed by crystallization from a mixture of *n*-hexane/EtOAc (8:2) to give **8** (10 mg).

Bonianic acid A (**1**): microcrystals, mp 202–203 °C (EtOAc);  $[\alpha]^{25}_{D}$  +118 (*c* 0.2, CHCl<sub>3</sub>); IR  $\nu_{max}$  3456, 2941, 2875, 1738, 1693, 1465, 1378, 1241, 1025, 998 cm<sup>-1</sup>; HRESIMS (positive mode) *m/z* 521.3615 [M + Na]<sup>+</sup> (calcd for C<sub>32</sub>H<sub>50</sub>NaO<sub>4</sub>, 521.3607); NMR data see Table 1.

Bonianic acid B (**2**): microcrystals, mp 193–194 °C (MeOH);  $[\alpha]^{25}_{D}$  +68 (c 0.4, CHCl<sub>3</sub>); IR  $\nu_{max}$  3498, 2933, 2869, 1727, 1628, 1469, 1377, 1264, 1030, 997 cm<sup>-1</sup>; HRESIMS (negative mode) m/z 513.3595  $[M - H]^-$  (calcd for C<sub>32</sub>H<sub>49</sub>O<sub>5</sub>, 513.3580); NMR data see Table 1.

3-O-Acetyluncaric acid (**3**): microcrystals, mp 203–204 °C (MeOH);  $[\alpha]^{30}_{D}$  +34 (*c* 0.5, CHCl<sub>3</sub>); IR  $\nu_{max}$  3430, 2932, 1733, 1690, 1467, 1372, 1246, 1029, 893 cm<sup>-1</sup>; HRESIMS (positive mode) *m*/*z* 531.3693 [M + H]<sup>+</sup> (calcd for C<sub>32</sub>H<sub>51</sub>O<sub>6</sub>, 531.3686); NMR data see Table 1. **Bioassays.** The details for the anti-TB bioassays are described in the Supporting Information.  $^{14a,b}$ 

## ASSOCIATED CONTENT

Supporting Information. 1D and 2D NMR spectra of 1-3. This material is available free of charge via the Internet at http://pubs.acs.org.

# AUTHOR INFORMATION

#### **Corresponding Author**

\*Tel: 84(0)437564995. Fax: 84(0)437917059. E-mail: phamvc@ ich.vast.ac.vn (P.V.C.); cvminh@vast.ac.vn (C.V.M.).

## ACKNOWLEDGMENT

The authors express their thanks to the Director of Cuc Phuong National Park for the permission and auspices, and to Mr. Mai Van Xinh, Cuc Phuong National Park, in the collection and re-collection of samples of *Radermachera boniana*. This research was supported under the ICBG grants from the Fogarty International Center, NIH, 1-UO1-TW001015-01 (1998-2003), 2-UO1-TW001015-06 (2003-2008), 3U01TW001015-10S1, and 2U01TW001015-11A1, administered by the Fogarty International Center as part of an International Cooperative Biodiversity Groups (ICBG) program, through funds from NIH, NSF, and Foreign Agricultural Service of the USDA.

## REFERENCES

(1) Southwick, F. Infectious Diseases: A Clinical Short Course, 2nd ed.; McGraw-Hill Medical Publishing Division, 2007; p 104.

(2) Http://www.who.int/tb/publications/2010/fact-

sheet\_tb\_2010.pdf.

(3) Soejarto, D. D.; Fong, H. H. S.; Tan, G. T.; Zhang, H. J.; Ma, C. Y.; Franzblau, S. G.; Gyllenhaal, C.; Riley, M. C.; Kadushin, M. R.; Pezzuto, J. M.; Xuan, L. T.; Hiep, N. T.; Hung, N. V.; Vu, B. M.; Loc, P. K.; Dac, L. X.; Binh, L. T.; Chien, N. Q.; Hai, N. V.; Bich, T. Q.; Cuong, N. M.; Southavong, B.; Sydara, K.; Bouamanivong, S.; Ly, H. M.; Thuy, T. V.; Rose, W. C.; Dietzman, G. R. *J. Nat. Prod.* **2006**, *69*, 473–481.

(4) Poehland, B. L.; Carté, B. K.; Francis, T. A.; Hyland, L. J.; Allaudeen, H. S.; Troupe, N. J. Nat. Prod. **198**7, 50, 706–713.

(5) (a) Maheshwari, P. J. Nat. Prod. 1989, 52, 623–628. (b) Djarmati,
Z.; Jankov, R. M.; Djordjevic, A.; Ribar, B.; Lazar, D.; Engel, P.
Phytochemistry 1992, 31, 1307–1309. (c) Maillard, M.; Adewunmi,
C. O.; Hostettmann, K. Phytochemistry 1992, 31, 1321–1323.

(6) (a) Srivastava, O. P.; Khare, A.; Khare, M. P. J. Nat. Prod. 1983, 46, 458–461. (b) Huneck, S. Tetrahedron 1963, 19, 479–482.

(7) Belsner, K.; Buchele, B.; Werz, U.; Syrovets, T.; Simmet, T. Magn. Reson. Chem. 2003, 41, 115–122.

(8) (a) Wojciechowski, Z. A.; Goad, L. J.; Goodwin, T. W. *Phytochemistry* **1973**, *12*, 1433–1436. (b) Gunatilaka, A. A.; Gopichand, Y.;

Schmitz, F. J.; Djerassi, C. J. Org. Chem. 1981, 46, 3860–3866.
(c) González, A. G.; León, F.; Rivera, A.; Muñoz, C. M.; Bermejo, J. J. Nat. Prod. 1999, 62, 1700–1701. (d) Batrakov, S. G.; Konova, I. V.; Sheichenko, V. I.; Esipov, S. E.; Galanina, L. A.; Istratova, L. N.; Sergeeva, Y. E. Phytochemistry 2004, 65, 1239–1246.

(9) (a) Migliuolo, A.; Piccialli, V.; Sica, D. J. Nat. Prod. **1990**, 52, 1262–1266. (b) Gaspar, E. M. M.; das Neves, H. J. C. *Phytochemistry* **1993**, 34, 523–527.

(10) (a) Sun, H.; Qiu, S.; Lin, L.; Wan, Z.; Lin, Z.; Pengsuparp, T.; Pezzuto, J. M.; Fong, H. H. S.; Cordell, G. A.; Farnsworth, N. R. *J. Nat. Prod.* **1996**, *59*, 525–527. (b) Ciau, Z.; Brito-Leoza, W.; Quijino, L. *J. Nat. Prod.* **2001**, *64*, 953–955.

(11) (a) Banskota, A. H.; Tezukaa, Y.; Le, K. P.; Tran, K. Q.; Saikia,
I.; Miwa, Y.; Taga, T.; Kadota, S. *Bioorg. Med. Chem. Lett.* 1998,
8, 3519–3524. (b) Banskota, A. H.; Tezuka, K.; Tran, K. Q.; Tanaka,
K.; Saiki, I.; Kadota, S. *Chem. Pharm. Bull.* 2000, 48, 496–504.

(12) Diyabalanage, T. K. K.; Wannigama, G. P.; Weerasuriya, A.; Jayasinghe, L.; Simmonds, P. *Phytochemistry* **1995**, *40*, 1311–1312.

(13) (a) Cantrell, C. L.; Rajab, M. S.; Franzblau, S. G.; Fronczek, F. R.; Fischer, N. H. *Planta Med.* **1999**, *65*, 732–734. (b) Case, R. J.; Wang, Y.; Franzblau, S. G.; Soejarto, D. D.; Matainaho, L.; Piskaut, P.; Pauli, G. F. *J. Chromatogr. A* **2007**, *1151*, 169–174.

(14) (a) Collins, L. A.; Franzblau, S. G. Antimicrob. Agents Chemother. **1997**, 41, 1004–1009. (b) Falzari, K.; Zhu, Z.; Pan, D.; Liu, H.; Hongmanee, P.; Franzblau, S. G. Antimicrob. Agents Chemother. **2005**, 49, 1447–1454.